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Abstract

Purpose – To provide a finite volume code, based on Cartesian coordinates, for studying combined
conductive and radiative heat transfer in three-dimensional irregular geometries.

Design/methodology/approach – In the present study, a three-dimensional blocked-off-region
procedure was presented and implemented in a numerical code based on the finite volume method to
model combined conductive and radiative heat transfer in complex geometries. This formulation was
developed and tested in three-dimensional complex enclosures with diffuse reflective surfaces and
containing gray absorbing-emitting and isotropically scattering medium. This approach was applied
to analyze the effect of the main of thermoradiative parameters on the temperature and flux values for
three-dimensional L-shaped enclosure.

Findings – The proposed isotropic model leads to satisfactory solutions with comparison to
reference data, which entitles us to extend it to anisotropic diffusion cases or to non-gray media. The
blocked-off-region procedure traits both straight and curvilinear boundaries. For curved or inclined
boundaries, a fine or a non-uniform grid is needed.

Originality/value – This paper offers a simple Cartesian practical technique to study the combined
conductive and radiative heat transfer in three-dimensional complex enclosures with both straight and
curvilinear boundaries.
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Nomenclature
a, b ¼ defined quantities,

equations (7a)-(7f) and
(16a)-(16i)

G ¼ incident intensity
¼

R
I dV

� �
I ¼ radiant intensity
I 0 ¼ black body radiant

intensity
L ¼ total number of discrete

solid angles

Lþ ¼ total number of discrete
solid angles oriented to a
given boundary

M ¼ a large number
ðM ¼ 1020Þ

N ¼ dimensionless quantity
defined in equation (15)

Ncr ¼ conduction-radiation
parameter defined in
equation (4)
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1. Introduction
The calculation of radiative heat transfer, in a multidimensional and complex
enclosure, demands a numerical technique flexible enough to deal with the irregular
geometries. Three of the most adopted methods to treat complex geometries are the
discrete ordinates, the discrete transfer and the finite volume methods. The discrete
ordinates method (DOM) was adapted to the finite element method by Fiveland (1984)
and Fiveland and Jesse (1995) and then formulated with the blocked-off-region
procedure by Chai et al. (1993). The discrete transfer method (DTM) was used with the
cell-blocking procedure based on Cartesian coordinates (Malalasekera and Lockwood,
1991), the finite element method formulation (Meng et al., 1993), and later with
non-orthogonal grid systems (Malalasekera and James, 1996). The finite volume
method (FVM) was developed with the spatial-multi-block procedure (Chai and Moder,
1997), the blocked-off-region procedure (Chai et al., 1994) and curvilinear
elliptic-cylinder and bicylindrical coordinates (Borjini et al., 1999a, b). Chai et al.
(1995), Lee et al. (1996) and Baek et al. (1998) applied this method to non-orthogonal
coordinate system. Liu et al. (1997) formulated both FVM and DOM in general
body-fitted coordinates. These three methods were employed by Coelho et al. (1998) to
predict radiative heat transfer in enclosures containing obstacles of very small
thickness (baffles). In this reference, the FVM and the DOM was developed using the
blocked-off-region procedure, and more studies concerning radiative heat transfer in

Nu, Nw ¼ number of discrete angles
in polar u, and azimuthal
w directions

n ¼ unit vector normal to the
control volume surface

_q ¼ internal heat source
qc ¼ dimensionless conductive

heat flux
qr ¼ dimensionless radiative

heat flux
qt ¼ dimensionless total heat

flux
r ¼ aspect ratio
R ¼ source term defined in

equation (14)
s ¼ distance in the direction V

of the intensity
Sc, ScC, ScP ¼ additional source terms

defined in equation (22)
Sr, SrC, SrP ¼ additional source terms

defined in equation (18)
T ¼ temperature
x, y, z ¼ Cartesian coordinates

Greek symbols

b ¼ extinction coefficient
ðb ¼ ss þ kÞ

DA ¼ area of a control volume
face

Dv ¼ control volume
DV ¼ control solid angle
1 ¼ emissivity
k ¼ absorption coefficient
s ¼ Stefan-Boltzmann

constant
ss ¼ scattering coefficient
u, f ¼ polar and azimuthal

angles, respectively
v ¼ scattering albedo

ðv ¼ ss=bÞ
V ¼ unit vector in direction of

intensity

Subscripts

e, w, n, s, f, b ¼ faces of control volume
centered in P

E, W, N, S, F, B ¼ nodes around the nodal
point P

P ¼ nodal point
W ¼ boundary of the

computational domain

Superscripts

l, l0 ¼ discrete angular directions
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enclosures with obstacles, such as protrusions and obstructions are cited. Detailed
bibliography on modeling radiative heat transfer in complex geometries can be found
in the work of Henson and Malalasekera (1997).

In the present study, the blocked-off-region procedure is implemented in an existing
numerical code based on the FVM (Borjini et al., 1999a) to model combined conductive
and radiative heat transfer in irregular geometries. The new code is tested in
three-dimensional illustrative examples. Results for purely radiating medium are given
for three-dimensional rectangular and L-shaped enclosures. Then the combined
conduction and radiation heat transfer in three-dimensional L-shaped enclosure is
studied. The enclosure has gray or black diffuse walls and contains a gray,
absorbing-emitting and eventually isotropically scattering medium. The effect of the
main of thermoradiative parameters on the temperature and flux values is put in
evidence.

2. Formulation
The energy equation can be expressed as follows

7·qr ¼ l72T ð1Þ

where l is the thermal conductivity and the divergence of the radiative heat flux qr is
given by

7·qr ¼ 4pk I 0ðTÞ2
1

4p

Z
V¼4p

I ðs;VÞ dV

� �
ð2Þ

By introducing the following dimensionless variables and parameters:

T* ¼
T

Tref
; x* ¼

bx

tW
; y* ¼

by

tL
; z* ¼

bz

tH
; tW ¼ bW ; tL ¼ bL;

tH ¼ bH ; rxy ¼ W=L; rxz ¼ W=H ; I* ¼
I

sT4
ref

ð3Þ

The energy equation (1) can then be rewritten as

1

tW

›2T*

›x 2
þ r2

xy

›2T*

›y 2
þ r2

xz

›2T*

›z 2

� �
¼

4k

N cr
T* 4 2

1

4

Z
V¼4p

I* ðs;VÞ dV

� �
ð4Þ

where

N cr ¼
lb

sT3
refW

is the conduction-radiation parameter with k and b are the absorption and the
extinction coefficients of the medium.

For simplicity, the superscript * denoting the normalized quantity is omitted.
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The dimensionless directional heat flux is defined as following:

qt ¼ qc þ qt ¼ 2
4N cr

txi

›T

›xi

ni þ

Z
V¼4p

I ðs;VÞV dV ð5Þ

where the first and the second terms on the right-hand side are dimensionless
conductive and radiative heat fluxes, respectively.

By integrating equation (4) over control volume, the following equation can be
written

aPTP ¼ aW TW þ aETE þ aSTS þ aN TN þ aBTB þ aFTF þ bP ð6Þ

The equation (6) can be rewritten as

TP ¼
aW TW þ aETE þ aSTS þ aN TN þ aBTB þ aFTF þ bP

aW þ aE þ aS þ aN þ aB þ aF þ ðSmÞP
ð7aÞ

where

aW ¼ aE ¼
1

tW

DyDz

Dx
ð7bÞ

aS ¼ aN ¼
r2

xy

tW

DxDz

Dy
ð7cÞ

aB ¼ aF ¼
r2

xz

tW

DxDy

Dz
ð7dÞ

aP ¼ aW þ aE þ aS þ aN þ aB þ aF þ 4Dv
k

N cr
T3

P ð7eÞ

bP ¼ DvP
k

N cr

Z
V¼4p

I ðs;VÞ dVþ 3T3
P

� �
ð7fÞ

ðSmÞp ¼ 4DvP
k

N cr
T3

P ð7gÞ

The radiative transfer equation for absorbing-emitting and isotropically scattering
medium, is written as

›I ðs;VÞ

›s
þ bI ðs;VÞ ¼ bR ð8Þ

where

R ¼ ð1 2 vÞI 0ðsÞ þ
v

4p

Z
4p

I ðs;V0Þ dV0 ð9Þ

I(s,V) is the radiation intensity in the direction V at the position s. I 0 is the blackbody
radiation intensity.
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The boundary condition on the gray diffuse wall with the prescribed temperature
Tb can be denoted by

I ðs;VÞ ¼ 1I 0ðsÞ þ
ð1 2 1Þ

p

Z
V0 ·nwa0

I ðs;V0ÞjV0·nwj dV0 ð10Þ

2.1 The finite volume method
The finite-volume method for radiative heat transfer divides the computational domain
into finite number of control volumes and the total solid angle into arbitrary number of
solid angles. The control solid angle DVl was calculated analytically by

DVl ¼

Z u lþ

u l2

Z w lþ

w l2

sinu du dw ð11Þ

The integration of equation (8) over an arbitrary control volume Dv and a control angle
DVl gives Z

DVl

Z
DA

IV·n dA dV ¼

Z
DVl

Z
Dv

bðR 2 I Þ dv dV ð12Þ

By assuming constant the magnitude of the intensity but allowing its direction to vary
within the control volume and control angle, the following finite-volume formulation
can be obtained

X6

i¼1

I l
iDAiN

l
i ¼ bðR 2 I lÞDv ð13Þ

with

R ¼ ð1 2 vÞI 0 þ
v

4p

XL

l 0¼1

I l 0DVl 0 ð14Þ

The term Nl
i; evaluated analytically, takes into account the variation of the intensity

direction within DVl,

Nl
i ¼

1

DVl

Z
DVl

V·ni dV ð15Þ

Equation (13) indicates that a net outgoing radiant energy across the control-volume
faces must be balanced by a net generation of radiant energy within the control volume
and control angle.

Using the step scheme (Chai et al., 1995) equation (8) becomes

al
PI l

P ¼ al
W I l

W þ al
EI l

E þ al
SI l

S þ al
N I l

N þ al
BI l

B þ al
F I l

F þ bP ð16aÞ

where

al
W ¼ DAwmax 2Nl

w; 0
h i

ð16bÞ
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al
E ¼ DAemax 2Nl

e; 0
h i

ð16cÞ

al
S ¼ DAsmax 2Nl

s; 0
h i

ð16dÞ

al
N ¼ DAnmax 2Nl

n; 0
h i

ð16eÞ

al
B ¼ DAbmax 2Nl

b; 0
h i

ð16fÞ

al
F ¼ DAf max 2Nl

f ; 0
h i

ð16gÞ

al
P ¼ DAw max Nl

w; 0
h i

þ DAe max Nl
e; 0

h i
þ DAs max Nl

s; 0
h i

þ DAn max Nl
n; 0

h i
þ DAb max Nl

b; 0
h i

þ DAf max Nl
f ; 0

h i
þ bDvP

ð16hÞ

bP ¼ bRPDvP ð16iÞ

The radiative boundary condition (equation (10)) for a diffusely emitting and reflecting
wall can be discretized as

I l
W ¼

1sT4
W

p
þ

ð1 2 1Þ

p
Lþ

X
Nl 0

w

��� ���I l 0

WDVl 0 ð17Þ

2.2 The blocked-off-region procedure
In order to avoid the complexity of treating non-orthogonal grids, it is suitable to
formulate a procedure to model irregular geometries using Cartesian coordinates
formulation.

The blocked-off-region procedure consists on drawing nominal domains around
given physical domains (Figure 1). The new domain contains active and inactive
regions for which the solutions are sought. This procedure has been developed for
conductive and convective heat transfer (Patankar, 1980) then extended to
two-dimensional radiative transfer problem by Chai et al. (1993, 1994). The model
that we will present now is a three-dimensional formulation of this approach.

In order to distinguish active cells from inactive ones, an additional source term is
suggested

Sr ¼ Src þ SrPI l
p ð18Þ

and added to the right member in equation (9). Equations (16h) and (16i) become,
respectively,
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al
p ¼ DAw max Nl

w; 0
h i

þ DAe max Nl
e; 0

h i
þ DAs max Nl

s; 0
h i

þ DAn max Nl
n; 0

h i

þ DAb max Nl
b; 0

h i
þ DAf max Nl

f ; 0
h i

þ ðb2 SrP ÞDvp

ð19Þ

bp ¼ ðbRp þ SrcÞDvp ð20Þ

For a given real black boundary, the additional source term is chosen as follows:
ðSrc; SrpÞ ¼ ð0; 0Þ for the active region and ðMI 0;2M Þ for the inactive region (M is a
large number). For real gray boundaries, we distinguish between emitted and reflected
intensities (Chai et al., 1994) and for the inactive cells the additional source terms
become ð1MI 0;2M Þ for the emitted part. The reflected part is added directly into the
active region calculation of the control volumes adjacent to the real boundaries. Using
equation (18), the additional source terms can be written, for control volume surfaces
orthogonal to the x-axis, as follows

Src ¼
Nl

wDy

DvP

ð1 2 1Þ

p
Lþ

X
Nl 0

w

��� ���I l 0

WDVl 0

SrP ¼ 0

ð21Þ

Similar equations can be written for the control volume surfaces orthogonal to the
y- and z-axis. In this work the step scheme is used for all control volumes. Other scheme
may be used only in the active region. In inclined or curved geometries the boundaries
are approximated with stepped profiles. Therefore, to get a reasonably accurate
solution a finer grid or a non-uniform grid is needed.

For the energy equation, the blocked-off-region technique consists on introducing a
source term in the discretized energy equation

Sc ¼ ScC þ ScPTP ð22Þ

where ScC and ScP are constants. The energy discretized equation becomes

Figure 1.
2D Illustrative example of

nominal and physical
domains
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TP ¼
aW TW þ aETE þ aSTS þ aN TN þ aBTB þ aFTF þ ½bP þ ScC�

aW þ aE þ aS þ aN þ aB þ aF þ ½ðSmÞP 2 ScP �
ð23Þ

For all active control volume ScC ¼ ScP ¼ 0 but in the inactive region, those coefficients
are given by

ScC ¼ MTb

and

ScP ¼ 2M ð24Þ

This condition forces the nodal temperature of the inactive control volumes to

TP <
MTb

M
¼ Tb ð25Þ

Consider the situation shown in Figure 2(a), when the control volume centred on P is
adjacent to an isothermal real boundary from the South, the additional source term in
equation (23) must be written as

ScC ¼ aSTb

and

Figure 2.
Particular real boundary
conditions
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ScP ¼ 2aS ð26Þ

For the situation shown in Figure 2(b), when the control volume P is limited by two
isothermal real boundaries at the South and the West walls, those coefficients are
specified as

ScC ¼ aSTb þ aW Tb

and

ScP ¼ 2aS 2 aW ð27Þ

3. Radiative test cases
The following test cases are defined for the three-dimensional rectangular and
L-shaped enclosures. The angular and spatial meshes are specified as one goes along.
The calculus process is stopped when the radiation intensity field satisfies for each
node P and direction l

I lðnÞ
P 2 I lðn21Þ

P

��� ���
I lðnÞ

P

# 1025 ð28Þ

where n is the number of iteration.

3.1 Three-dimensional rectangular enclosure
As the first test problem, the FVM is applied to the three-dimensional idealized furnace
(Figure 3) proposed by Mengüç and Viskanta (1985). The dimensional size of the
computational domain is W £ H £ L ¼ 2 £ 2 £ 4 m3: The six gray walls are submitted
to prescribed thermo-radiative conditions ðT; 1Þ ¼ ð1; 200 K; 0:85Þ for the wall z ¼ 0;
ð400 K; 0:7Þ for the wall z ¼ H and ð900 K; 0:7Þ otherwise. First the furnace is filled
with a gray absorbing-emitting gas with k ¼ 0:25=m; k ¼ 0:5=m and k ¼ 1=m then
with absorbing-emitting and isotropically scattering gas with b ¼ 0:5=m and v ¼ 0:7:
The uniform internal heat sources are _q ¼ 5 kW=m3 and the RTE is coupled with the
energy equation as follows

_q ¼ kð4pI 0 2 GÞ ð29Þ

Figure 3.
Three-dimensional

idealized furnace
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The results obtained with the present finite volume method (FVM) were compared with
the zone method predictions (Truelove, 1988). The enclosure is divided into 21 £ 21 £
21 spatial mesh, a 4 £ 12 angular mesh for the absorbing-emitting medium and 4 £ 16
angular mesh for the absorbing-emitting and scattering gas.

Figure 4 shows the net radiative flux profiles on the hot and the cold walls of the
furnace. Our results are seen to be very close to the zone solution on each wall. The
temperature distributions at three axial locations of furnace are shown in Figure 5. The
present results show comparable accuracy with those of the zone method. For
absorbing-emitting medium a coarser angular and spatial meshes provide sufficient
accuracy.

Figure 4.
Net radiative heat fluxes
at z ¼ 0 and z ¼ H walls
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3.2 Three-dimensional L-shaped enclosure
The FVM solution of the three-dimensional L-shaped enclosure (Figure 6) is compared
with the DTM (Malalasekera and James, 1996) and YIX (Hsu and Tan, 1997) solutions.
The dimensions of this tested geometry are W £ L £ H ¼ 1 £ 3 £ 3 m3 (where LL ¼

1 m and HL ¼ 2 m). We consider all walls being black at 500 K and an emitting and
absorbing media inside at 1,000 K.

For absorption coefficient values of k ¼ 10; 5; 2; 1; and 0.5/m, the present model,
using a 11 £ 21 £ 21 spatial mesh and 4 £ 12 angular mesh, gives satisfactory results
(Figure 7).

Figure 5.
Gas temperature

distributions at three axial
locations
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For k ¼ 10=m; the shadowing effect is not likely to propagate down to the bottom
surface due to the high optical thickness of the isothermal medium. The curves of low
extinction coefficients bring the effect of the protruded volume. Whereas, for strongly
absorbing medium, the geometry and shadowing effects on radiative heat transfer are
not significant.

The proposed blocked-off-region procedure seems to be an attractive way of dealing
with complex enclosures that may be accurately discretized using Cartesian

Figure 6.
Three-dimensional
L-shaped enclosure

Figure 7.
Radiative heat flux
profiles along the line A-A
of the L-shaped enclosure
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coordinates, such as the L-shaped enclosure. However, it is a crude approximation in
the case of enclosures with curvilinear or skewed boundaries, such as the elliptical and
triangular enclosure (results not shown here). In fact, these boundaries need to be
treated in a stepwise fashion, and this requires a very fine grid to reduce the numerical
errors. In such cases, curvilinear body-fitted coordinates (Liu et al., 1997) will perform
better.

4. Combined conduction-radiation heat transfer in 3D L-shaped enclosure
For coupled conduction and radiation heat transfer, the calculus process is stopped
when the temperature field satisfies for each node P

T ðnÞ
P 2 Tðn21Þ

P

��� ���
TðnÞ

P

# 1025 ð30Þ

where n is the number of iteration.
The first test deals with a three-dimensional rectangular enclosure as shown in

Figure 3. All walls are black where the bottom wall ðz ¼ 0Þ being at dimensionless
temperature T ¼ 1 and the other being at 0.5. This enclosure is filled with an emitting
and absorbing medium with b ¼ 1=m: In order to get the similar two-dimensional
problem reported by Razzaque et al. (1984) the dimensions of this tested geometry are
W £ L £ H ¼ 1 £ 1 £ 10=m3:

Figure 8 shows the dimensionless temperature profiles at line x ¼ W=2; y ¼ H=2
for various conduction-radiation parameters Ncr. Using 21 £ 21 £ 11 control volumes
and 4 £ 16 control solid angles, the present results show comparable accuracy with the
finite element method solutions (Razzaque et al., 1984).

The dimensions of the three-dimensional L-shaped enclosure (Figure 6) are W £
L £ H ¼ 1 £ 1 £ 2=m3 (where LL ¼ 0:75 m and HL ¼ 1 m). All walls are black where
the wall y ¼ 0 being at dimensionless temperature T ¼ 1 and the other being at 0.5.
The calculations have been carried out for several cases to investigate the effects of

Figure 8.
Dimensionless

temperature profiles at
line x ¼ W/2, y ¼ L/2 for

various
conduction-radiation

parameters Ncr: (a)
conductive heat transfer;

(b) Ncr¼1; (c) Ncr¼0.1; (d)
Ncr¼0.01; and (e) radiative

heat transfer
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conduction-radiation parameter Ncr, scattering albedo v and the extinction coefficient
b. For all cases, we have considered 4 £ 20 angular mesh, 11 £ 23 £ 23 spatial mesh
and the convergence criterion defined in equation (30).

We consider an absorbing-emitting and non-scattering medium with k ¼ 1=m:
Figure 9 shows the dimensionless temperature along the y-direction at the line x ¼
W=2 and z ¼ H=4 for various values of the conduction-radiation parameters. As Ncr

decreases, a steeper temperature gradient is formed at both y ¼ 0 and y ¼ L walls and
the temperature medium far from the hot surface increases. This fact is more clearly
reflected in Figure 10 which illustrates the isothermal contours for pure conductive
heat transfer, N cr ¼ 0:01 and pure radiative heat transfer. In fact, the radiative energy
emitted from the hot wall can penetrate more deeply into the medium and is therein
transformed into thermal energy (Kim and Baek, 1991). One can note the temperature
increasing at the top half of enclosure when Ncr rises.

The dimensionless total flux and the wall radiative to total heat flux ratio along the
line x ¼ W=2; y ¼ L are shown in Figure 11. The total flux becomes evidently much
higher as Ncr increases and more uniform as Ncr decreases. The fractional radiative
heat flux is seen to decrease (Figure 11(b)) when Ncr increases. The radiative transfer
mode is largely predominant in the upper half of the enclosure.

In the following, we fixed the conduction-radiation parameter at N cr ¼ 0:01 and we
considered an absorbing-emitting and non-scattering medium. Figure 12 illustrates the
isothermal contours for various extinction coefficients at plane x ¼ W=2: As b
increases the temperature at the upper half of the medium increases. The
dimensionless total flux and the wall radiative to total heat flux ratio along the line
x ¼ W=2; y ¼ L are shown in Figure 13 for various values of the extinction coefficients
b. The fractional radiative heat flux is seen to decrease as b increase (Figure 13(b)).

Figure 14 shows the isothermal contours at the plane x ¼ W=2 for various
scattering albedo values with N cr ¼ 0:01 and b ¼ 1=m: In the case of purely scattering

Figure 9.
Dimensionless
temperature profiles at
line x ¼ W/2, z ¼ H/4 for
various
conduction-radiation
parameters Ncr:
(a) conductive heat
transfer; (b) Ncr¼1;
(c) Ncr¼0.1; (d) Ncr¼0.01;
(e) Ncr¼0.001; and
(f) radiative heat transfer
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Figure 10.
Isotherms at the plane

x ¼ W/2 for various
conduction-radiation

parameters Ncr:
(a) conductive heat

transfer; (b) Ncr¼0.01; and
(c) radiative heat transfer

Figure 11.
(a) Dimensionless total

heat flux; and (b) fractional
radiative heat flux at line

x ¼ W/2, y ¼ L for
various

conduction-radiation
parameters Ncr
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Figure 12.
Isotherms at the plane
x ¼ W/2 for various
extinction coefficients b:
(a) b ¼ 0.25/m; (b)
b ¼ 1/m; and (c) b ¼ 2/m

Figure 13.
(a) Dimensionless total
heat flux; and (b) fractional
radiative heat flux at line
x ¼ W/2, y ¼ L for
various extinction
coefficients b
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medium ðv ¼ 1Þ; the divergence of the radiative heat flux is null, we find the
temperature profile for purely conductive heat transfer. The fractional radiative heat
flux is seen to increase as v increases (Figure 15(b)), while the dimensionless total heat
flux seems to be insensitive to this parameter (Figure 15(a)).

In the following, the FVM is applied to the L-shaped enclosure plotted in Figure 6
where its dimensions are W £ L £ H ¼ 1 £ 1 £ 2=m3 and LL ¼ 0:75 m: All walls are
assumed to be black where the west wall ðy ¼ 0Þ being at dimensionless temperature
T ¼ 1 and the other being at 0.5. Figures 16 and 17 show the effect of aspect ratio r
ðr ¼ HL=H Þ on the total heat flux and on the isothermal contours for the case of
N cr ¼ 0:01; b ¼ 1=m and v ¼ 0:5: For all aspect ratio, the maximum of the
dimensionless total heat flux is localized at the same height then the centre of the hot
surface z ¼ ðH 2 HLÞ=2 (Figure 16). This is confirmed by the isothermal contours on
the mid-plane ðx ¼ W=2Þ plotted in Figure 17. Figure 16 also shows clearly the
non-linear dependence between the dimensionless total heat flux and the aspect ratio.
In fact, this flux decreases enormously when r changes from 1/2 to 3/4.

5. Conclusion
In the first part of this work, the finite volume method formulated with the blocked-off
region procedure was developed and tested in three-dimensional complex enclosures
with diffuse reflective surfaces and containing gray absorbing-emitting and
isotropically scattering medium. Compared with benchmarked results, the finite
volume method gives satisfactory predictions of both wall heat flux and temperature
distributions. For curved or inclined boundaries, a fine or a non-uniform grid is needed.
Chai and Moder (1997) formulated the spatial multi-block procedure, which avoids a
fine discretization of the totality of the nominal domain.

In the second part, this approach was applied to analyze the effect of the main of
thermoradiative parameters (conduction-radiation parameter, single scattering albedo

Figure 14.
Isotherms at the plane

x ¼ W/2 for various
scattering albedo

coefficients v: (a) v ¼ 0;
(b) v ¼ 0.2; (c) v ¼ 0.8;

and (d) v ¼ 1
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Figure 16.
Dimensionless total heat
flux at line x ¼ W/2, y ¼ L
for various aspect ratio r
(r ¼ HL/H)

Figure 15.
(a) Dimensionless total
heat flux and (b) fractional
radiative heat flux at line
(x ¼ W/2, y ¼ L) for
various scattering albedo
coefficients v
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and extinction coefficient) on the temperature and flux values for three-dimensional
L-shaped enclosure.

The proposed isotropic model leads to satisfactory solutions with comparison to
reference data, which entitles us to extend it to anisotropic diffusion cases or to
non-gray media.
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